Course Structure & Syllabus

M.Tech. Remote Sensing

Department of Remote Sensing Birla Institute of Technology Mesra, Ranchi- 835215

Jharkhand, INDIA
Restructured and applicable from
Session 2021-22 onwards

Institute Vision

To become a Globally Recognized Academic Institution in consonance with the social, economic and ecological environment, striving continuously for excellence in education, research and technological service to the National needs.

Institute Mission

- To educate students at Undergraduate, Post Graduate Doctoral and Post-Doctoral levels to perform challenging engineering and managerial jobs in industry.
- To provide excellent research and development facilities to take up Ph.D. programmes and research projects.
- To develop effective teaching and learning skills and state of art research potential of the faculty.
- To build national capabilities in technology, education and research in emerging areas.
- To provide excellent technological services to satisfy the requirements of the industry and overall academic needs of society.

Department Vision

Be a centre of excellence in the field of Geo-spatial Technology education and research to meet the needs of ever increasing requirement of human resources in these fields and to cater to the larger interest of the Society and Nation.

Department Mission

- Impart quality education and equip the students with strong foundation that could make them capable of handling challenges of the ever advancing geo-spatial technologies.
- Maintain state-of-the-art in research and outreach facilities in phase with the premier institutions for sustained improvement in the quality of education and research.

Programme Educational Objectives (PEOs)	Programme Outcomes (POs)
1. To prepare the students in identifying, analysing and solving geospatial problems.	1. An ability to independently carry out research /investigation and development work to solve real life geospatial problems.
 2. To train the students in developing practical and executable solutions to the challenges of growing field of Remote Sensing and GIS. 3. To impart the students with strong base of knowledge that makes them suitable 	 2. An ability to write and present a substantial technical report/document and publish international level research articles. 3. Students should be able to demonstrate a degree of mastery over
both for industries as well as for teaching and research.	the areas of Remote Sensing and GIS technology. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
4. To inculcate the students with the sensitivity towards ethics, public policies and their responsibilities	4. An ability to share theoretical and practical knowledge in both teaching and research as well as in industries.
towards the society.	5. An ability to apply professional ethics, accountability and equity.

M.TECH REMOTE SENSING

PROGRAMME SCHEME - SEMESTER WISE DISTRIBUTION

S. No	Semester	Course Category	Credits	Total
		2 Programme Core (PC)	8	
1	FIRST	1 Progammet Elective (PE)	3	19
		4 LABS (2 PC + 2 PE)	8	
		3 Programme Core (PC)	10	
2	SECOND	1 Progamme Elective (PE)	3	19
		3 LABS (2 PC + 1 PE)	6	
		Research Project	8	
3	THIRD	Open Elective (OE-I)/MOOC	3	14
		Open Elective (OE-II)/MOOC	3	
4	FOURTH	Research Project	16	16
	TOTAL			

MASTER OF TECHNOLOGY (Remote Sensing)

PROGRAMME CORE (**PC**) (offered in MO session only)

S. No	Course	Course Title	Pre requisites /	Credits
	Code		Co requisites	
1	RS 501R1	Principles of Remote Sensing and	Basic Physics/Science	4
		Digital Satellite Image Processing	Computer Knowledge	
2	RS 502R1	Geographic Information System and	Basic Sciences/	4
		Satellite Navigation System	Basic Computing	
3	RS 503	Remote Sensing and Digital Satellite	RS 501	2
		Image Processing Laboratory		
4	RS 504	GIS &Satellite Navigation System	RS 502	2
		Laboratory		
5	RS 515	Programming and Customisation in	RS 501, RS 502	2
		geospatial domain Laboratory		

PROGRAMME CORE (**PC**) (offered in SP session only)

S. No	Course	Course Title	Pre requisites /	Credits
	Code		Co requisites	
1	RS 511	Aerial and Satellite Photogrammetry & Image Interpretation	RS 501	3
2	RS 512	Advanced Remote Sensing and Geospatial Modelling	RS 501, RS 502	4
3	RS 513	Aerial and Satellite Photogrammetry & Image Interpretation Laboratory	RS 511	2
4	RS 514	Advance Remote Sensing and Geospatial Modelling Laboratory	RS 512	2
5	RS 521	Data Sources, Statistics and Research Methods in Geospatial Domain	RS 501, RS502	3

ELECTIVES

Students pursuing M. Tech in Remote Sensing Technology should complete at least three (09 credits) courses each from the Programme Electives and atleast 2 Open electives (06 credits) listed below.

PROGRAMME ELECTIVE (PE) (Theory & Laboratory)

S. No	Course Code	Course Title	Pre requisites / Co requisites	Credits
GROUP-	A (MO session on	ly)		
1	RS 505	Remote Sensing in Agriculture & Forestry		3
2	RS 506	Remote Sensing in Disaster Management	RS 501 & RS 502.	3
3	RS 507	Remote Sensing in Hydrology & Water Resources		3

DEPARTMENT OF REMOTE SENSING, BIRLA INSTITUTE TECHNOLOGY, MESRA, RANCHI 835215

SYLLABUS: M. Tech. RFMOTF SFNSING MO-2021 Revised

		SYLLABUS: M. Tech. REMOTE SENSING MO-20)21_Revised		
4	RS 508	Remote Sensing in Agriculture	RS 503, RS 504 &	2	
		& Forestry Laboratory	RS 505		
5	RS 509	Remote Sensing in Disaster	RS 503, RS 504 &	2	
		Management Laboratory	RS 506		
6	RS 510	Remote Sensing in Hydrology	RS 503, RS 504 &	2	
		& Water Resources	RS 507		
		Laboratory			
GROUP	GROUP-B (SP session only)				
7	RS 516	Remote Sensing in Snow and	RS 501, RS 502	3	
		Glacier Hydrology			
8	RS 517	Remote Sensing in Climate	RS 501 & RS 502	3	
		Change and Environmental			
		Impact Assessment			
9	RS 518	Remote Sensing in Snow and	RS 503, RS 504 &	2	
		Glacier Hydrology Laboratory	RS 516		
10	RS 519	Remote Sensing in Climate	RS 503, RS 504 &	2	
		Change and Environmental	RS 517		
		Impact Assessment Laboratory			

OPEN ELECTIVE (OE)

These open elective courses are available only to candidates from other departments. However, all the courses (listed below) may not be announced in a semester. Students are requested to contact the department Head or Coordinator to know the availability on semester basis.

Choice A: Open Electives (beginner level)

- GI 501 Principles of Remote Sensing (Theory = 3 Credits) Monsoon Semester
- GI 505 Principles of Remote Sensing (Laboratory = 2 Credits) Monsoon Semester
- RS 502 Geographic Information System and Satellite Navigation System (Theory = 3 Credits) Monsoon Semester
- RS 504 Geographic Information System and Satellite Navigation System Lab (Laboratory = 2 Credits) Monsoon Semester
- GI 509 Digital Satellite Image Processing (Theory = 4 Credits) Spring Semester
- GI 511 Digital Satellite Image Processing (Laboratory = 2 Credits) Spring Semester
- RS 520 Real World Operationalisation of GIS and GNSS (3 Credits) Spring Semester

Choice B: Open Electives (Advanced level)

- RS 511 Aerial and Satellite Photogrammetry & Image interpretation (Theory = 3 Credits) Spring Semester
- RS 513 Aerial and Satellite Photogrammetry & Image interpretation (Laboratory = 2 Credits) Spring Semester
- GI 602 Advanced Geo-Spatial Modelling and Decision Support System (Theory = 4 Credits) Spring Semester
- GI 604 Advanced Geo-Spatial Modelling and Decision Support System (Laboratory = 2 Credits) Spring Semester
- RS 507 Remote Sensing in Hydrology & Water Resources (Theory = 3 Credits) Monsoon Semester
- RS 510 Remote Sensing in Hydrology & Water Resources (Laboratory = 2 Credits) Monsoon Semester

MINOR PRGRAMME

Minor in Remote Sensing: (minimum required credits = 12) (Only for Students from OTHER DEPARTMENTS). Subjects can be chosen from the list of Open Electives.

Beginner Level Credit Requirement = 6 Credits Advanced Level Credit Requirement = 6 Credits

SYLLABUS: M.Tech. REMOTE SENSING MO-2021_Revised

COURSE STRUCTURE SEMESTER - I

	Course	Course	Subjects	L	T	P	Credit
	Category	Code					
		RS 501R1	Principles of Remote Sensing and Digital Satellite Image Processing	3	1	0	4
		RS 502R1	Geographic Information System and Satellite Navigation System	3	1	0	4
SEMESTER-I	PC	RS 503	Remote Sensing and Digital Satellite Image Processing Laboratory	0	0	4	2
SEME		RS 504	Geographic Information System&Satellite Navigation SystemLaboratory	0	0	4	2
		RS 515	Programming and Customisation in geospatial domain Laboratory	0	0	4	2
	PE	RS *	ELECTIVE – I	3	0	0	3
	FE	RS *	ELECTIVE – I Laboratory	0	0	4	2
			Total Credits (1st Semester)				19

SEMESTER – II

			SEVIESTER - II	_	TD.	Т	G 114
	Course	Course	Subjects	\mathbf{L}	T	P	Credit
	Category	Code					
		RS 511	Aerial and Satellite Photogrammetry & Image Interpretation	3	0	0	3
l II.		RS 512	Advanced Remote Sensing and Geospatial Modelling	3 1 0	0	4	
SEMESTER-II	PC	RS 513	Aerial and Satellite Photogrammetry & Image Interpretation Laboratory	0	0	4	2
		RS 514	Advanced Remote Sensing and Geospatial Modelling Laboratory	0	0	4	2
		RS 521	Data Sources, Statistics and Research Methods in Geospatial Domain	3	0	0	3
	DE	RS *	ELECTIVE – II	3	0	0	3
	PE	RS *	ELECTIVE – II Laboratory	0	0	4	2
		•	Total Credits (2 nd Semester)	•	•	•	19

SEMESTER – III

	1 .	1	SENIESTER – III	1	ı		1
	Course	Course	Subjects	L	T	P	Credit
	Category	Code					
~	PC	RS 601	Thesis (Part – I)				8
SEMESTER-III	OE I	•	OPEN ELECTIVE / MOOC	3	0	0	3
SEM	OE II	•	OPEN ELECTIVE / MOOC	3	0	0	3
			Total Credits (3 rd Semester)		•		14

$\boldsymbol{SEMESTER-IV}$

STE	Course Category	Course Code	Subjects	L	T	P	Credit
MEST R-IV	PC	RS 604	Thesis (Part – II)				16
SEN			Total Credits (4 th Semester)	•		•	16

TOTAL = 68 credits

PROGRAMME ELECTIVES

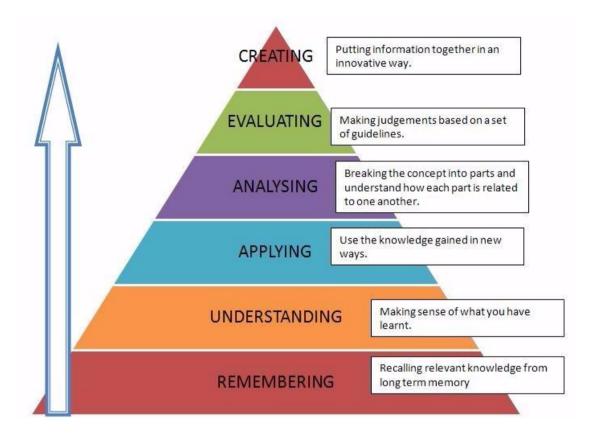
Course No. Course Title

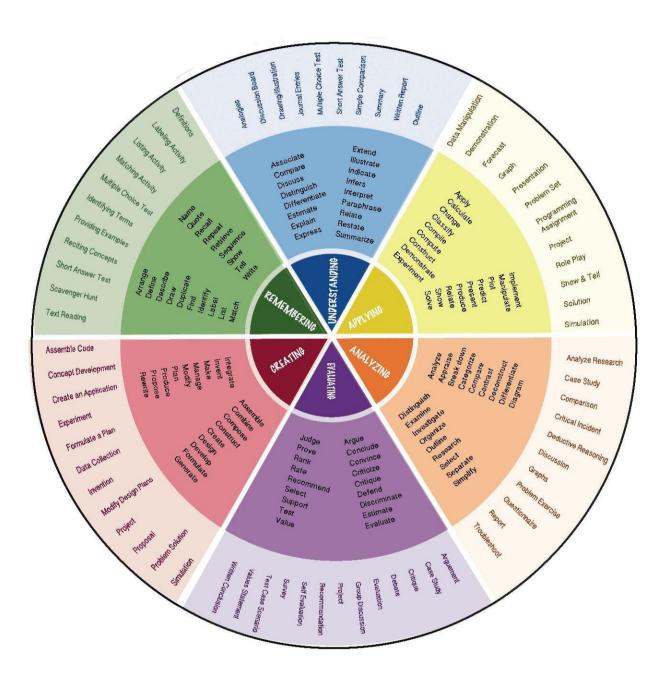
PE-I (Semester-I) RS 505 Remote Sensing in Agriculture & Forestry RS 506 Remote Sensing in Disaster Management RS 507 Remote Sensing in Hydrology & Water Resources RS 508 Remote Sensing in Agriculture & Forestry Laboratory RS 509 Remote Sensing in Disaster Management Laboratory RS 510 Remote Sensing in Hydrology & Water Resources Laboratory

PE-II (Semester- II)

RS 516	Remote Sensing in Snow and Glacier Hydrology
RS 517	Remote Sensing in Climate Change and Environmental Impact Assessment
RS 518	Remote Sensing in Snow and Glacier Hydrology Laboratory
RS 519	Remote Sensing in Climate Change and Environmental Impact Assessment
	Laboratory

THESIS (Programme Core)


RS 601 - Thesis (Part – I) – Focus on Problem definition, Literature Review, Data Collection, Objectives and Research Questions Formulation and Detailed Work Plan, and partial fulfillment of initial objectives.


RS 604 - Thesis (Part – II) – Focus on systematic execution of work plan, data processing, analysis, interpretation, inferences and fulfillment of objectives and research questions, and report preparation, and finally leading to a research publication in peer reviewed journals.

BLOOM'S TAXONOMY FOR CURRICULUM DESIGN AND ASSESSMENT:

Preamble

The design of curriculum and assessment is based on Bloom's Taxonomy. A comprehensive guideline for using Bloom's Taxonomy is given below for reference.

M. Tech. (REMOTE SENSING) SEMESTER III

Course code: RS 601

Course title: RESEARCH PROJECT (Thesis Part I)

Pre-requisite(s): Basic physics

Co-requisite(s):

Credits: L: T: P: C:

0 0 8

Class schedule per week: 4

Class: M. TECH

Semester / Level: 03&04/06 Branch: REMOTE SENSING

Course Objectives

This course aims to make the student with following abilities:

A.	Carry out Independent Research Project addressing real life geospatial problems with
	sound scientific framework.
B.	Prepare thematic and topographic maps from satellite data and other sources, and
	Utilise various Geospatial processing and modelling techniques and Create research
	report with acceptable quality and ethics, and communicate results to stakeholders.

Course Outcomes (CO):

On completion of this course, students should be able to:

CO1	Identify, Collect, Compare, evaluate and summarise relevant existing literatures					
	related to the problem in hand.					
CO ₂	Identify Research Gaps, Develop appropriate research questions and Objectives in					
	relation to their domain of research.					
CO3	Design Research Strategy and Methodology and Create coherent geospatial database					
	and other relevant data for each objective.					
CO4	Apply Geospatial, Geostatistical, Statistical tools and techniques, and evaluate the					
	appropriateness of results in relation to objectives and research questions.					
CO5	Integrate, interpret and synthesis all results and write a scientifically sound academic					
	report with appropriate referencing, and communicate research findings to					
	stakeholders and in peer reviewed journal/conferences.					

Mapping Course Outcome with Programme Outcome

3	PO1	PO2	PO3	PO4	PO5
CO1	1	2	2	3	3
CO2	2	3	2	2	3
CO3	3	2	2	3	3
CO4	3	3	3	2	1
CO5	3	3	3	3	3

Low = 1, Medium = 2, High= 3